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Abstract—Intramolecular hydrogen bonding facilitates nucleophilic addition of sulfones to Baylis–Hillman adducts in a single step
to realize the substituted allyl sulfones. The reaction is performed in PEG (400 MW) as solvent, which allows easy solvent recycling.
� 2006 Elsevier Ltd. All rights reserved.
Baylis–Hillman adducts have proved to be very useful
multifunctional synthons in organic chemistry,1 espe-
cially for the preparation of trisubstituted alkenes.2

The allylic alcohol functionality is used as a nucleophile
acceptor either by converting the hydroxy group into a
leaving group (acetate in most cases)3 or involving
Et3B as a catalyst or reagent4 to facilitate hydroxy group
departure.
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Lately, there has been increased interest in the applica-
tion of Baylis–Hillman adducts as synthons for bio-
active molecule generation.5 We and several others are
engaged in this exercise. Kabalka et al. have reported re-
cently the nucleophilic addition of acetates and sulfones
to Baylis–Hillman adducts to realize the substituted allyl
acetates and sulfones, and found that the reaction pro-
ceeds more efficiently in ionic liquids6 compared to con-
ventional solvents. However, precondition was that the
hydroxy group had been converted into acetate (for
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smooth allylic displacement). Herein, we disclose a
new protocol in which the Baylis–Hillman adduct (with-
out acetylation) undergoes a smooth and rapid nucleo-
philic addition of sulfone using sodium phenylsulfinate
in PEG (400 MW) (Eq. 1) as a recyclable reaction
medium7 to realize the substituted allyl sulfones.

Firstly the 4-fluorobenzaldehyde-methyl acrylate adduct
1 was subjected to sodium phenylsulfinate in PEG
resulting in the clean formation of sulfone ester 1a
(Table 1) in 90% yield in less than 11 h8 with exclusive
(Z)-selectivity as evidenced by extensive NMR studies
including DQCOSY, NOESY and HSQC experiments.9

This product is a result not only of the Michael addition
of sulfone but also the elimination of hydroxide to
generate the a,b-unsaturated ester. A possible reaction
mechanism is shown in Scheme 1. No additional reagent
or catalyst was needed for the reaction to proceed. To
prove the generality, various other Baylis–Hillman
adducts were prepared following our own protocol10

and subjected to Michael reaction-dehydroxylation in
one step (see Table 1). The phenyl ketone 2, 4-methoxy-
phenyl ester 3, phenyl ester 4, 2-bromophenyl ester 5
and furan ester 6 all react to yield products in over
80% yield. The styrene ester 7 and aliphatic substrates
8, 9 and 10 also reacted in high yields. In all the exam-
ples studied, the olefin geometry was found to be Z
based on the 1H and 13C NMR chemical shifts and com-
parison with literature values.11 To further ascertain the
role of –OH group, two substrates viz, the tert-butyl-
dimethylsilyl protected acrylate 11 and 2-benzylacrylic
acid ethyl ester 12 were subjected to the present protocol
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Table 1. Hydroxy-assisted catalyst-free Michael addition-dehydroxylation of Baylis–Hillman adducts12

Baylis–Hillman adducts Product Time (h) Yield (%)a
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CO2Me

F 1

CO2Me

SO2PhF
1a

11 90
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No Reaction

11

COOEt
No Reaction

12
a Isolated yields after chromatography; the products were characterized from spectral data.
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but without any success. Thus, the lack of the hydroxy
group, or protecting it with a silyl group prevented the
nucleophilic addition reaction (Scheme 1).
In summary, the present letter shows that Baylis–Hill-
man adducts can be subjected to nucleophilic addition
in a single step.
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Scheme 1. Possible reaction mechanism for allylic sulfonylation of
Baylis–Hillman adducts.
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calcd for C17H17SO4 [M+H]+ 317.3855, found 317.3849.
Compound 6a semi-solid: 1H NMR (300 MHz, CDCl3): d
7.83 (2H, d, J = 6.9 Hz), 7.55–7.40 (5H, m), 6.70 (1H, d,
J = 1.9 Hz), 6.40 (1H, d, J = 1.9 Hz), 4.71 (2H, s), 3.58
(3H, s); 13C NMR (75 MHz, CDCl3): d 166.2, 158.3, 152.4,
142.8, 138.5, 133.2, 129.6, 126.7, 118.7, 117.2, 111.4, 53.8,
52.1; HRMS calcd for C15H15SO5 [M+H]+ 307.3471,
found 307.3476. Compound 9a viscous liquid: 1H NMR
(200 MHz, CDCl3): d 7.90–7.70 (2H, m), 7.66–7.42 (3H,
m), 6.84 (1H, d, J = 11.6 Hz), 4.18 (2H, s), 3.42 (3H, s),
2.82–2.64 (1H, m), 1.04 (6H, d, J = 5.5 Hz); 13C NMR
(50 MHz, CDCl3): d 166.2, 139.0, 133.6, 128.9, 128.8,
128.7, 128.6, 53.9, 51.9, 28.9, 21.5; HRMS calcd for
C14H19SO4 [M+H]+ 283.3684, found 283.3681.
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