

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 2981-2984

Tetrahedron Letters

Hydroxy-assisted catalyst-free Michael addition-dehydroxylation of Baylis–Hillman adducts in poly(ethylene glycol)[☆]

S. Chandrasekhar,^{a,*} B. Saritha,^a V. Jagadeshwar,^a Ch. Narsihmulu,^a Dolly Vijay,^a G. Dattatreya Sarma^b and B. Jagadeesh^b

^aOrganic Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India ^bNuclear Magnetic Resonance Division, Indian Institute of Chemical Technology, Hyderabad 500 007, India

> Received 26 September 2005; revised 6 February 2006; accepted 16 February 2006 Available online 9 March 2006

Abstract—Intramolecular hydrogen bonding facilitates nucleophilic addition of sulfones to Baylis–Hillman adducts in a single step to realize the substituted allyl sulfones. The reaction is performed in PEG (400 MW) as solvent, which allows easy solvent recycling. © 2006 Elsevier Ltd. All rights reserved.

Baylis–Hillman adducts have proved to be very useful multifunctional synthons in organic chemistry,¹ especially for the preparation of trisubstituted alkenes.² The allylic alcohol functionality is used as a nucleophile acceptor either by converting the hydroxy group into a leaving group (acetate in most cases)³ or involving Et_3B as a catalyst or reagent⁴ to facilitate hydroxy group departure.

Lately, there has been increased interest in the application of Baylis–Hillman adducts as synthons for bioactive molecule generation.⁵ We and several others are engaged in this exercise. Kabalka et al. have reported recently the nucleophilic addition of acetates and sulfones to Baylis–Hillman adducts to realize the substituted allyl acetates and sulfones, and found that the reaction proceeds more efficiently in ionic liquids⁶ compared to conventional solvents. However, precondition was that the hydroxy group had been converted into acetate (for smooth allylic displacement). Herein, we disclose a new protocol in which the Baylis–Hillman adduct (without acetylation) undergoes a smooth and rapid nucleophilic addition of sulfone using sodium phenylsulfinate in PEG (400 MW) (Eq. 1) as a recyclable reaction medium⁷ to realize the substituted allyl sulfones.

Firstly the 4-fluorobenzaldehyde-methyl acrylate adduct 1 was subjected to sodium phenylsulfinate in PEG resulting in the clean formation of sulfone ester 1a (Table 1) in 90% yield in less than 11 h⁸ with exclusive (Z)-selectivity as evidenced by extensive NMR studies including DQCOSY, NOESY and HSQC experiments.9 This product is a result not only of the Michael addition of sulfone but also the elimination of hydroxide to generate the α , β -unsaturated ester. A possible reaction mechanism is shown in Scheme 1. No additional reagent or catalyst was needed for the reaction to proceed. To prove the generality, various other Baylis-Hillman adducts were prepared following our own protocol¹⁰ and subjected to Michael reaction-dehydroxylation in one step (see Table 1). The phenyl ketone 2, 4-methoxyphenyl ester 3, phenyl ester 4, 2-bromophenyl ester 5 and furan ester 6 all react to yield products in over 80% yield. The styrene ester 7 and aliphatic substrates 8, 9 and 10 also reacted in high yields. In all the examples studied, the olefin geometry was found to be Z based on the ¹H and ¹³C NMR chemical shifts and comparison with literature values.¹¹ To further ascertain the role of -OH group, two substrates viz, the *tert*-butyldimethylsilyl protected acrylate 11 and 2-benzylacrylic acid ethyl ester 12 were subjected to the present protocol

[☆]IICT Communication No. 050819.

^{*}Corresponding author. Tel.: +91 40 7193434; fax: +91 40 27160512; e-mail: srivaric@iict.res.in

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.02.104

Table 1.	Hydroxy-assisted	catalyst-free	Michael	addition-dehy	ydroxylation	of Baylis-	-Hillman :	adducts ¹²

Baylis–Hillman adducts	Product	Time (h)	Yield (%) ^a
F 1 CO_2Me	F CO_2Me SO_2Ph Ia	11	90
	O SO ₂ Ph	11.5	92
MeO H CO ₂ Me	$MeO \xrightarrow{CO_2Me}{3a} SO_2Ph$	12	91
OH CO_2Me 4	$\bigcup_{\mathbf{4a}} \bigcup_{\mathrm{SO}_2\mathrm{Ph}} \bigcup_{\mathrm{SO}_2\mathrm$	11	93
$\bigcup_{Br} \underbrace{CO_2Me}_{5}$	$ \begin{array}{c} & CO_2Me \\ & Br & SO_2Ph \\ & 5a \end{array} $	11	90
OH O 6	COOMe o 6a SO ₂ Ph	12	80
OH COOMe	$7a$ SO_2Ph	11	85
	8a COOMe SO ₂ Ph	13	85
OH COOMe 9	9a ^{COOMe} 9a ^{SO₂Ph}	13	81
COOMe 10	COOMe SO ₂ Ph	12	82
$\bigcup_{i=1}^{OTBS} \bigcup_{i=1}^{COOEt} \longrightarrow Ne$	o Reaction		
$\bigcap_{12}^{\text{COOEt}} \longrightarrow \text{Not}$	Reaction		

^a Isolated yields after chromatography; the products were characterized from spectral data.

but without any success. Thus, the lack of the hydroxy group, or protecting it with a silyl group prevented the nucleophilic addition reaction (Scheme 1).

In summary, the present letter shows that Baylis-Hillman adducts can be subjected to nucleophilic addition in a single step.

Scheme 1. Possible reaction mechanism for allylic sulfonylation of Baylis-Hillman adducts.

Acknowledgements

B.S., V.J., C.N., G.D.S. and D.V. thank CSIR and UGC, New Delhi. for financial assistance.

References and notes

- (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–892; (b) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley and Sons: New York, 1997; Vol. 51, pp 201–350; (c) Aggarwal, V. K.; Emme, I.; Fulford, S. Y. J. Org. Chem. 2003, 68, 692– 700; (d) Shi, M.; Xu, Y.-M. Angew. Chem., Int. Ed. 2002, 41, 4507–4510.
- (a) Drewes, S. E.; Roos, G. H. P. *Tetrahedron* 1988, 44, 4653–4670;
 (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. *Tetrahedron* 1996, 52, 8001–8062;
 (c) Li, G.; Wei, H.-X.; Gao, J. J.; Caputo, T. D. *Tetrahedron Lett.* 2000, 41, 1–5;
 (d) Basavaiah, D.; Pandiaraju, S.; Padmaja, K. *Synlett* 1996, 393–395.
- (a) Kotti, S. R. S. S.; Xu, X.; Li, G.; Headley, A. D. Tetrahedron Lett. 2004, 45, 1427–1431; (b) Legros, J.-Y.; Fiaud, J.-C. Tetrahedron Lett. 1990, 31, 7453–7456; (c) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384–3388; (d) Bouyssi, D.; Gerusz, P.; Balme, G. Eur. J. Org. Chem. 2002, 2445–2448; (e) Ortar, G. Tetrahedron Lett. 2003, 44, 4311–4314.
- (a) Navarre, L.; Darses, S.; Genet, J. P. Chem. Commun. 2004, 1108–1109; (b) Basavaiah, D.; Sarma, P. K. S. J. Chem. Soc., Chem. Commun. 1992, 955–957; (c) Hoffmann, H. M. R.; Rabe, J. J. Org. Chem. 1985, 50, 3849– 3859; (d) Pachamuthu, K.; Vankar, Y. D. Tetrahedron Lett. 1998, 39, 5439–5442; (e) Basavaiah, D.; Krishnamacharyulu, M.; Hyma, R. S.; Sarma, P. K. S.; Kumaragurubaran, N. J. Org. Chem. 1999, 64, 1197–1200.
- (a) Basaviah, D.; Satyanarayana, T. Chem. Commun. 2004, 32–33; (b) Krishna, P. R.; Sachwani, R.; Kannan, V. Chem. Commun. 2004, 2580–2581; (c) Yu, C.; Hu, L. J. Org. Chem. 2002, 67, 219–223; (d) Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Mergott, M. J.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402–2403; (e) Racker, R.; Doring, K.; Reiser, O. J. Org. Chem. 2000, 65, 6932–6939; (f) Frank, S. A.; Mergott, D. J.; Rousch, W. R. J. Am. Chem. Soc. 2002, 124, 2404–2405; (g) Li, G.; Rao, J.; WeiII, X.; Enright, M. Org. Lett. 2000, 2, 617–620; (h) Barrett, A. G. M.; Cook, A. S.; Kamimura, A. Chem. Commun. 1998, 2533–2534.
- (a) Kabalka, G. W.; Venkataiah, B.; Dong, G. *Tetrahedron Lett.* 2003, 44, 4673–4675; (b) Patra, A.; Roy, A. K.; Joshi, B. S.; Roy, R.; Batra, S.; Bhaduri, A. P. *Tetrahedron* 2003, 59, 663–670; (c) Aumann, R.; Fu, X. L.; Holst, C.; Frohlich, R. *Organometallics* 2002, 21, 4356–4368; (d) Shi,

M.; Xu, Y. M. Angew. Chem., Int. Ed. 2002, 41, 4507– 4510; (e) Pathak, R.; Shaw, A. K.; Bhaduri, A. P. Tetrahedron 2002, 58, 3535–3541; (f) Iwamura, T.; Fujita, M.; Kawakita, T.; Kinoshita, S.; Watanabe, S.-i.; Kataoka, T. Tetrahedron 2001, 57, 8455–8466.

- (a) Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S. S.; Reddy, N. R. Org. Lett. 2002, 4, 4399–4401; (b) Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S. S.; Reddy, N. R. Chem. Commun. 2003, 1716–1717.
- 8. The same reaction could be performed with similar yields in absolute EtOH, however, with longer reaction time and without recycling.
- 9. The HSQC and ¹³C spectra of **1a** clearly showed the presence of 17 carbons with one methyl, 12 methine and 5 quaternary carbons. The Z-stereochemistry of **1a** was assigned on the basis of ¹H and ¹³C chemical shifts in comparison with literature values.¹¹ The structure is supported by NOE cross peaks between H7–H9, H11–H9 and H1–H3. *Spectral data* for **1a**: ¹H NMR (500 MHz, CDCl₃); δ 7.92 (1H, br s, H-1), 7.88 (2H, m, H-11 and H-15), 7.63 (1H, m, H-13), 7.56 (2H, d, H-3 and H-7, J = 8.7 Hz), 7.52 (2H, t, H-12 and H-14, J = 7.5 Hz), 7.09 (2H, dt, H-4 and H-6, J = 8.7, 5.4 Hz), 4.45 (2H, s, H-9), 3.57 (3H, s, H-16); ¹³C NMR (125 MHz, CDCl₃); δ 166.0, 160.2, 139.5, 133.5, 129.5, 129.0, 128.8, 128.6, 128.2, 128.0, 121.0, 55.2, 52.5.

- Chandrasekhar, S.; Narsihmulu, Ch.; Saritha, B.; Sultana, S. S. *Tetrahedron Lett.* 2004, 45, 5865–5867.
- (a) Basavaiah, D.; Muthukumaran, K.; Sreenivasulu, B. Synthesis 2000, 545; (b) Manson, P. H.; Esmile, N. D. Tetrahedron 1994, 41, 12001; (c) Shanmugam, P.; Singh, P. R. Synlett 2001, 1314; (d) Basavaiah, D.; Sarma, P. K. S.; Kumaragurubaran, N. J. Org. Chem. 1999, 64, 1197; (e) Funabiki, T.; Hosomi, H.; Yoshida, S.; Tarama, K. J. Am. Chem. Soc. 1982, 104, 1560; (f) Foucaud, A.; El Guemmout, F. Bull. Soc. Chim. Fr. 1989, 403.
- 12. Typical experimental procedure: Into a flask purged with N₂ containing poly(ethylene glycol) (400 MW, 2 g) were added the Baylis-Hillman adduct (1.0 equiv) and sodium phenylsulfinate (1.5 equiv). The reaction mixture was heated at 80 °C for the appropriate time (see Table 1) during which the reaction was monitored by means of TLC. The reaction mixture was extracted with ether $(4 \times 5 \text{ ml})$. The combined ether layers were washed with water, brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Subsequent column chromatography over silica gel gave the product (Z)sulfone in the yields mentioned in Table 1.8 Spectroscopic data for selected compounds: Compound 4a (liquid): ¹H NMR (300 MHz, CDCl₃): δ 7.95–7.82 (2H, m), 7.62–7.32 (9H, m), 4.40 (2H, s), 3.55 (3H, s); ¹³C NMR (75 MHz, CDCl₃): δ 166.8, 146.2, 139.5, 133.6, 129.6, 129.1, 129.0, 128.9, 128.7, 128.5, 121.0, 55.1, 52.2; HRMS

calcd for C₁₇H₁₇SO₄ $[M+H]^+$ 317.3855, found 317.3849. Compound **6a** semi-solid: ¹H NMR (300 MHz, CDCl₃): δ 7.83 (2H, d, J = 6.9 Hz), 7.55–7.40 (5H, m), 6.70 (1H, d, J = 1.9 Hz), 6.40 (1H, d, J = 1.9 Hz), 4.71 (2H, s), 3.58 (3H, s); ¹³C NMR (75 MHz, CDCl₃): δ 166.2, 158.3, 152.4, 142.8, 138.5, 133.2, 129.6, 126.7, 118.7, 117.2, 111.4, 53.8, 52.1; HRMS calcd for C₁₅H₁₅SO₅ $[M+H]^+$ 307.3471,

found 307.3476. Compound **9a** viscous liquid: ¹H NMR (200 MHz, CDCl₃): δ 7.90–7.70 (2H, m), 7.66–7.42 (3H, m), 6.84 (1H, d, J = 11.6 Hz), 4.18 (2H, s), 3.42 (3H, s), 2.82–2.64 (1H, m), 1.04 (6H, d, J = 5.5 Hz); ¹³C NMR (50 MHz, CDCl₃): δ 166.2, 139.0, 133.6, 128.9, 128.8, 128.7, 128.6, 53.9, 51.9, 28.9, 21.5; HRMS calcd for C₁₄H₁₉SO₄ [M+H]⁺ 283.3684, found 283.3681.